Baharlou Studio - Home Page
List of Publications

List of Publications

List of Publications

THESIS

Baharlou, E. (2017). Generative agent-based architectural design computation: Behavioral strategies for integrating material, fabrication and construction characteristics in design processes (ICD-1) [Doctoral Dissertation, Institute for Computational Design and Construction (ICD), University of Stuttgart]. (ISBN: 978-3-9819457-0-6; DOI: 10.18419/opus-9752)

PEER REVIEWED PAPERS

Kilic, U., Ma, J., Baharlou, E., & Ozbulut, O. E. (2023). Effects of viscosity modifying admixture and nanoclay on fresh and rheo-viscoelastic properties and printability characteristics of cementitious compositesJournal of Building Engineering70, 106355. https://doi.org/10.1016/j.jobe.2023.106355

Barnes, S., Kirssin, L., Needham, E., Baharlou, E., Carr, D. E., & Ma, J. (2022). 3D printing of ecologically active soil structures. Additive Manufacturing, 52, 102670. https://doi.org/10.1016/j.addma.2022.102670

Duong, E., Vercoe, G., & Baharlou, E. (2020). Engelbart: An Agent-Based Interface for Exploring Beyond the Social Media Filter Bubble. In B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, & M. del Campo (Eds.), Distributed Proximities: Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) (pp. 406–415). Online and Global.

Nan, M., Chen, Z., Liu, L., & Baharlou, E. (2020). Hygrosensitive kinetic facade: A full-scale meteorosensitive shading system based on wood’s self-actuated hygroscopic behavior. In L. Werner & D. Koering (Eds.), Proceedings of the 38th eCAADe Conference: Vol. 1. Anthropologic: Architecture and Fabrication in the cognitive age (pp. 133–142). TU Berlin, Berlin, Germany.

Giachini, P. A. G. S., Gupta, S. S., Wang, W., Wood, D., Yunusa, M., Baharlou, E., Sitti, M., & Menges, A. (2020). Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Science Advances, 6(8), eaay0929. (DOI: 10.1126/sciadv.aay0929)

Goti, K., Katz, S., Baharlou, E., Vasey, L., & Menges, A. (2019). Jamming formations: Intuitive design and fabrication process through human-computer interaction. In J. Sousa, J. Xavier, & G. Castro Henriques (Eds.), Proceedings of the 37th eCAADe and 23rd SIGraDi Conference: Vol. 1. Architecture in the Age of the 4th Industrial Revolution (pp. 669–680). University of Porto, Porto, Portugal.

Alvarez, M. E., Martínez-Parachini, E. E., Baharlou, E., Krieg, O., Schwinn, T., Vasey, L., Hua, C., Menges, A., & F. Yuan, P. (2019). Tailored Structures, Robotic Sewing of Wooden Shells. In J. Willmann, P. Block, M. Hutter, K. Byrne, & T. Schork (Eds.), Robotic Fabrication in Architecture, Art and Design 2018 (pp. 405–420). ROBARCH 2018. Springer, Cham. (DOI: 10.1007/978-3-319-92294-2_31)

Forestiero, F., Xenos, N., Wood, D., & Baharlou, E. (2018). Low-tech Shape-Shifting Space Frames. In C. Mueller & S. Adriaenssens (Eds.), Proceedings of IASS Annual Symposia: 2018, No. 18. Creativity in Structural Design (pp. 1–8). International Association for Shell and Spatial Structures (IASS).

Yablonina, M., Prado, M., Baharlou, E., Schwinn, T., & Menges, A. (2017). Mobile robotic fabrication system for filament structures. In A. Menges, B. Sheil, R. Glynn, & M. Skavara (Eds.), Fabricate 2017 (pp. 202–209). UCL Press. (ISBN 978-1-78735-001-4)

Brugnaro, G., Baharlou, E., Vasey, L., & Menges, A. (2016). Robotic softness: An adaptive robotic fabrication process for woven structures. In K. Velikov, S. Manninger, M. Del Campo, S. Ahlquist, & G. Thün (Eds.), Posthuman FRONTIERS: Data, Designers, and Cognitive Machines: Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) (pp. 154–163). Association for Computer Aided Design in Architecture (ACADIA). (ISBN 978-0-692-77095-5)

Rusenova, G., Dierichs, K., Baharlou, E., & Menges, A. (2016). Feedback- and data-driven design for aggregate architectures: Analyses of data collections for physical and numerical prototypes of designed granular materials. In K. Velikov, S. Manninger, M. Del Campo, S. Ahlquist, & G. Thün (Eds.), Posthuman FRONTIERS: Data, Designers, and Cognitive Machines: Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) (pp. 62–72). Association for Computer Aided Design in Architecture (ACADIA). (ISBN 978-0-692-77095-5)

Poinet, P., Baharlou, E., Schwinn, T., & Menges, A. (2016). Adaptive pneumatic shell structures: Feedback-driven robotic stiffening of inflated extensible membranes and further rigidification for architectural applications. In A. Herneoja, T. Österlund, & P. Markkanen (Eds.), Proceedings of the 34th eCAADe Conference: Vol. 1. Complexity & Simplicity (pp. 549–558). University of Oulu, Oulu, Finland.

Baharlou, E., & Menges, A. (2015). Toward a behavioral design system: An agent-based approach for polygonal surfaces structures. In L. Combs & C. Perry (Eds.), Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA). Computational Ecologies: Design in the Anthropocene (pp. 161–172). University of Cincinnati. (ISBN 978-0-69253-726-8)

Vasey, L., Baharlou, E., Dörstelmann, M., Koslowski, V., Prado, M., Schieber, G., Menges, A., & Knippers, J. (2015). Behavioral design and adaptive robotic fabrication of a fiber composite compression shell with pneumatic formwork. In L. Combs & C. Perry (Eds.), Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA). Computational Ecologies: Design in the Anthropocene (pp. 297–309). University of Cincinnati. (ISBN 978-0-69253-726-8)

Baharlou, E., & Menges, A. (2013). Behavioural prototyping: An approach to agent-based computational design driven by fabrication characteristics and material constraints. In C. Gengnagel, A. Kilian, J. Nembrini, & F. Scheurer (Eds.), Proceedings of the Design Modelling Symposium Berlin 2013. Rethinking Prototyping (pp. 291–303). (ISBN 978-3-89462-243-5)

Baharlou, E., & Menges, A. (2013). Generative agent-based design computation: Integrating material formation and construction constraints. In R. Stouffs & S. Sariyildiz (Eds.), Proceedings of the 31st eCAADe Conference: Vol. 2. Computation and Performance (pp. 165–174). Faculty of Architecture, Delft University of Technology.

Parascho, S., Baur, M., Baharlou, E., Knippers, J., & Menges, A. (2013). Agent-based model for the development of integrative design tools. In P. Beesley, M. Stacey, & O. Khan (Eds.), Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture. ACADIA 2013: Adaptive Architecture (pp. 429–430). ACADIA and Riverside Architectural Press. (ISBN 978-1-926724-22-5)

Busch, B., Ladurner, G., Baharlou, E., & Menges, A. (2011). Adaptive structure: A modular system for generative architecture. In C. Soddu (Ed.), Proceedings of GA2011 International Conference, XIV Generative Art Conference (pp. 88–98). Domus Argenia Publisher. (ISBN 978-88-96610-14-5)

Publication of Works

AM Chronicle Editor (2022). UVA researchers 3d-print soil structures that can grow plants. AM Chronicle. Available online at https://www.amchronicle.com/news/university-of-virginia-3d-prints-living-soil-walls-that-sprout-greenery/ (accessed 2/8/2023).

Aouf, Rima Sabina (2022). University of Virginia 3D-prints living soil walls that sprout greenery. Dezeen. Available online at https://www.dezeen.com/2022/09/05/university-of-virginia-3d-printed-soil-seed-walls/ (accessed 2/8/2023).

Arch2O (2022). These 3d printed soil structures could be used to construct future homes. Available online at https://www.arch2o.com/these-3d-printed-soil-structures-could-be-used-to-construct-future-homes/ (accessed 2/8/2023).

Bahadursingh, Nathaniel (2022). UVA researchers develop 3D-printed structures made of soil and seeds. Archinect. Available online at https://archinect.com/news/article/150318529/uva-researchers-develop-3d-printed-structures-made-of-soil-and-seeds (accessed 2/8/2023).

baublatt (2023). Vertikale Gärten. Erde als Baumaterial und 3D-Druck sollen es möglich machen. Available online at https://www.baublatt.ch/baupraxis/vertikale-gaerten-erde-als-baumaterial-und-3d-druck-sollen-es-moeglich-machen-33195 (accessed 2/8/2023).

Berg, Nate (2022a). ‘Bioconstruction’ will build homes out of flowering, 3D-printed dirt. Scientists have figured out how to build living structures out of extruded soil. Fastcompany. Available online at https://www.fastcompany.com/90780034/bioconstruction-will-build-homes-out-of-flowering-3d-printed-dirt (accessed 2/8/2023).

Berg, Nate (2022b). Que tal ter uma casa construída com “paredes vivas”? Fastcompany Brasil. Available online at https://fastcompanybrasil.com/co-design/que-tal-ter-uma-casa-construida-com-paredes-vivas/ (accessed 2/8/2023).

Beyda, Emily (2022). These Researchers Can 3D Print Earth-Based Structures. Is It the Future of Construction? The bluebeam Blog. Available online at https://blog.bluebeam.com/3d-printed-living-walls/ (accessed 2/8/2023).

Claire S. (2022). 3D Printing Can Be Done With Soil and Seeds. 3Dnatives. Available online at https://www.3dnatives.com/en/3d-printing-soil-seeds-281120225/ (accessed 2/8/2023).

Comminge, Tom (2022). Construire des maisons avec de l’encre à base de terre pour remplacer le béton. 3Dnatives. Available online at https://www.3dnatives.com/maisons-terre-02122022 (accessed 2/8/2023).

Demeure, Yohan (2022). Impression 3D : des « murs vivants » pour végétaliser plus facilement les bâtiments. Science post. Available online at https://sciencepost.fr/impression-3d-murs-vivants-pour-vegetaliser-facilement-batiments/ (accessed 2/8/2023).

Design Boom (2022). University of virginia launches ‘bioconstruction’ project. Available online at https://www.designboom.com/technology/university-of-virginia-researchers-develop-3d-printed-soil-structures-08-19-2022/ (accessed 2/8/2023).

Ebert, Grace (2022). Seeds Embedded into 3D-Printed Earthen Architecture Produce Living Green Walls. Colossal. Available online at https://www.thisiscolossal.com/2022/09/living-3d-printed-walls/ (accessed 2/8/2023).

Emre, Muaz (2022). University Of Virginia 3D-Prints Living Structures That Can Grow Plants. ParametricArchitecture. Available online at https://parametric-architecture.com/university-of-virginia-3d-prints-living-structures-that-can-grow-plants/ (accessed 2/8/2023).

Facello, Matteo (2022). The walls of the University of Virginia. PMagazine – La Trilogia del Design. Available online at https://www.pmagazine.it/linnovazione-oggi-e-green/ (accessed 2/19/2023).

Firtina, Nergis (2022). Researchers developed 3D-printed living soil walls that can support plant growth. They created a cylindrical prototype resembling a Chia pet. Interesting Engineering, Inc. Available online at https://interestingengineering.com/innovation/3d-printed-living-soil-walls (accessed 2/8/2023).

Gartner, Lucia (2022). Researchers 3D print soil structures for plants to grow on. 3printr. Available online at https://www.3printr.com/researchers-3d-print-soil-structures-for-plants-to-grow-on-0558264/ (accessed 2/8/2023).

Gojkov, Stevan (2022). Seme biljaka u 3D štampanim zidovima za zelene gradove budućnosti. Gradnja.rs. Available online at https://www.gradnja.rs/biljno-seme-3d-stampani-zidovi-university-of-virginia/ (accessed 2/8/2023).

Green Roofs for Healthy Cities (2022). University of Virginia 3D-Prints Living Soil Walls that Sprout Greenery. Available online at https://livingarchitecturemonitor.com/news/university-of-virginia-3d-prints-living-soil-walls-that-sprout-greenery (accessed 2/8/2023).

Hanaphy, Paul (2022). New method of 3d printing living soils could unlock the carbon-capturing homes of the future. 3D Printing Industry. Available online at https://3dprintingindustry.com/news/new-method-of-3d-printing-living-soils-could-unlock-the-carbon-capturing-homes-of-the-future-214554/ (accessed 2/8/2023).

Horx-Strathern, Oona (2022). HOMEREPORT 2023. Frankfurt am Main, Zukunftsinstitut.

Hughes, Keagan (2022). UVA researchers create walls of plants with 3D printing. nbc29. Available online at https://www.nbc29.com/2022/09/08/uva-researchers-create-walls-plants-with-3d-printing/ (accessed 2/8/2023).

Huseynzade, Niyaz (2022). 3d-printed structures that sprout plants. a look at the university of Virginia’s innovative technique. FREEYORK. Available online at https://freeyork.org/architecture/3d-printed-structures-that-sprout-plants-a-look-at-the-university-of-virginias-innovative-technique/ (accessed 2/8/2023).

Joram (2022). Forscher 3D-drucken Bodenstrukturen, auf denen Pflanzen wachsen können. 3druck. Available online at https://3druck.com/forschung/forscher-3d-drucken-bodenstrukturen-auf-denen-pflanzen-wachsen-koennen-29111490/ (accessed 2/8/2023).

Lilli Green (2022). Lebendige Lehmwände aus dem 3D-Drucker. Available online at https://www.lilligreen.de/lebendige-lehmwaende-aus-dem-3d-drucker/ (accessed 2/8/2023).

Mirage.News (2022). Playing with dirt leads to big potential for sustainable buildings. Available online at https://www.miragenews.com/playing-with-dirt-leads-to-big-potential-for-826963/ (accessed 2/8/2023).

Mitra, Srishti (2022). 3D-printed living soil walls by university of virginia can grow plants. Yanko Design. Available online at https://www.yankodesign.com/2022/09/05/3d-printed-living-soil-walls-by-university-of-virginia-can-grow-plants/ (accessed 2/8/2023).

Renault, Cyril (2022). Des graines intégrées dans une architecture en terre imprimée en 3D donnent vie à des murs végétaux. Sain et Naturel. Available online at https://sain-et-naturel.ouest-france.fr/graines-integrees-dans-une-architecture-murs-vegetaux.html (accessed 2/8/2023).

Shakeel, Fatima (2022). These researchers have created living 3d printed soil walls that can support plant growth. Wonderful Engineering. Available online at https://wonderfulengineering.com/these-researchers-have-created-living-3d-printed-soil-walls-that-can-support-plant-growth/ (accessed 2/8/2023).

Souza, Eduardo (2022). Nature and Technology: Walls That Can Grow Plants. ArchDaily. Available online at https://www.archdaily.com/989216/nature-and-technology-walls-that-can-grow-plants (accessed 2/8/2023).

Stevenson, Kerry (2022). Using soil material for construction 3D printing? Fabbaloo. Available online at https://www.fabbaloo.com/news/using-soil-material-for-construction-3d-printing (accessed 2/8/2023).

Surfaces Reporter (2022). 3D printed living soil walls and roofs that sprout plants. Available online at https://surfacesreporter.com/articles/134406/3d-printed-living-soil-walls-and-roofs-that-sprout-plants-university-of-virginia (accessed 2/8/2023).

Thursd. (2022). Living 3D Soil Walls Have Caused an Immense Amount of Curiosity. Thursd. Available online at https://thursd.com/articles/living-3d-soil-walls-have-caused-an-immense-amount-of-curiosity (accessed 2/8/2023).

Totaro, Romina (2022). 3D printed buildings can now incorporate greenery. domus. Available online at https://www.domusweb.it/en/sustainable-cities/2022/09/06/buildings-made-with-3d-printer-can-incorporate-greenery.html (accessed 2/8/2023).

Tsujimura, Takuya (2022). 植物が根を張る!? 土を使った3Dプリント構造物. バージニア大学が開発した 土に植物の種子を埋め込んだ3Dプリント用資材. Tecture Mag. Available online at https://mag.tecture.jp/culture/20220914-3d-print-soil-structures/ (accessed 2/8/2023).

UVA Today (2022). Playing with Dirt Leads to Big Potential for Sustainable Buildings. Communications of the ACM. Available online at https://cacm.acm.org/news/263215-playing-with-dirt-leads-to-big-potential-for-sustainable-buildings/fulltext (accessed 2/8/2023).

Verónica (2022). Nuevos avances en la arquitectura sostenible incluyen impresiones 3d. Available online at https://www.oldskull.net/arquitectura/nuevos-avances-en-la-arquitectura-sostenible-incluyen-impresiones-3d/ (accessed 2/8/2023).

Walker, Karen (2022). UVA Researchers 3D-print Soil Structures that Can Grow Plants. University of Virginia School of Engineering and Applied Science. Available online at https://engineering.virginia.edu/news/2022/07/playing-dirt-leads-big-potential-sustainable-buildings (accessed 2/8/2023).

Walker, Karen (2023). Playing with dirt leads to big potential for sustainable buildings. Available online at https://news.virginia.edu/content/playing-dirt-leads-big-potential-sustainable-buildings (accessed 2/8/2023).

Walsh, Niall Patrick (2022). In 2022, breakthroughs in 3D printing and material science challenged how we build, and what we build with. Archinect. Available online at https://archinect.com/news/article/150332888/in-2022-breakthroughs-in-3d-printing-and-material-science-challenged-how-we-build-and-what-we-build-with (accessed 2/8/2023).